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STRESS SINGULARITIES AT INTERFACE CORNERS IN
BONDED DISSIMILAR ISOTROPIC ELASTIC MATERIALS
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Abstract—The plane problem is considered of two materially dissimilar isotropic, homogeneous, elastic wedges
that are bonded together along both of their common faces so that the cross section forms a composite full-
plane with a single corner in the otherwise straight interface boundary. The loading is due to a regular plane
body force field with finite resultant applied to a bounded subregion of one of the wedge domains. Emphasis is
placed on determining how the order of the singularity in the stress field at the corner depends on the material
constants and corner angle. Numerical results are presented for several chosen angles and all physically relevant
composites. In no instance is the stress singularity more severe than that associated with the traction and dis-
placement problems for the reentrant wedge element.

1. INTRODUCTION

THIS investigation is one of a series concerned with studying plane elastostatic solutions
for cylindrical composite wedges. The emphasis in these studies has been on determining
the nature of the singularity in the stress field at the apex of the constituent wedges. The
study began with the solution of the traction boundary value problem for bonded materiaily
dissimilar orthogonal wedges [1]. A discussion of [1] by Dundurs [2] showed how to reduce
the number of composite material parameters involved from three to two. This reduction
was significant and the problem studied in [1] was considered again in [3] with much more
complete and satisfactory results. The more general geometry of bonded materially
dissimilar wedges of arbitrary angles was treated in [4]. Numerical results for many par-
ticular cases of this geometry were given showing the dependence of the order of the stress
singularity at the apex on the wedge angles and material combinations. In [5] the geometry
of a crack terminating at a material interface was studied from the same viewpoint.

The present investigation deals with the plane problem of two dissimilar wedge regions
which are bonded together along both of their common faces so that the cross section
forms a composite full-plane with a single corner in the otherwise straight interface
boundary (Fig. 1). The loading is due to any regular plane body force field with finite
resultant applied to a bounded subregion of one of the wedge domains. The dependence
of the order of the stress field singularity at the interface corner on the material constants
and corner angle is displayed by use of the composite parameters o, § introduced in [2]
and used also in [3-51.

Many special cases of the geometry studied here occur in engineering and material
structures and hence are of interest in technology. For example, the geometry in Fig. 6
occurs as a local element at the end of a right elastic cylinder that is embedded in and
bonded to a dissimilar elastic body. Such a configuration was considered recently in con-
nection with load transfer problems by Muki and Sternberg [6]. The singular behavior
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F1G. 1. Interface corner in bonded dissimilar materials.

in the plane problem indicated in Fig. 6 can be related to that in the axisymmetric case of
the above three-dimensional problem. Another example where the geometric configurations
studied here occur locally is provided by the microstructure of materials which are treated
as homogeneous on a macroscopic scale, such as steel, but which are composed of a
bonded aggregate of dissimilar angular grains on a microscopic scale. The inherent local
stress concentrations in such materials may be related to the strength of the material.

2. STATEMENT OF THE PROBLEM

Let D,D” and D’ denote, respectively, the entire (x,,x,) plane, the wedge region
0<f<9y 0<r<oo and its complementary wedge region —d <8< 0, 0 <r < oo,
(6 = 2r—1v), Fig. 1. Let S(x; u#,m) denote a two-dimensional elastostatic solution (stress
and displacement fields) on D, which is occupied by an isotropic, homogeneous elastic
material characterized by the two constants y, m, corresponding to a particular body force
field with finite resultant force and moment applied to a bounded subregion Q of the region
D’; p is the shear modulus and m is related to Poisson’s ratio v by

4(1 —v) for plane strain,

4 .
—— for generalized plane stress.
14v

We wish to obtain the two-dimensional solution corresponding to the same applied
forces when D", D’ are occupied by different materials characterized by (u”, m”), (u', m')
and are bonded together along their common interface boundary. Let S"(x; ', m’, u", m"),
S'(x; ', m', u”, m") represent this solution when x is in D", D".

It is convenient to decompose the desired solution S’ on D’ according to

S'(x; ' ', s m) = 80x; ', m)+ (x5 o ml, 1", m). @)
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This decomposition removes the body force loading from the residual part S of S’ and,
due to the assumptions with regard to its resultants, the stress field ¢ is O(r ) as r — co.
In view of the decomposition (2) in which $(x; 4, m) is supposed to be known, we need
to find stress and displacement fields {t",u"}, {%, W} with plane polar components related
to the Airy functions ¢”, ¢, which are suitably defined and satisfy equations of the type

V4¢ =0, )
on D", D', by equations of the form
164) 1 8%¢ _ ¢ 1 ¢ 1 6¢
"Era TR T T T o0 2 o0 @

ou,  1[10¢ 1 0% ,
E'__Zy[ o T U-mAVie |,

Qo 101 16, 104|
o r rob yu

Because of (2), the bond conditions along the interface boundaries (continuity of traction
and displacement) appear as

Toolrs 0) = Z4q(r, 0)+ Toq(r, 0),

Tro(r, 0) = ,4(r, 0)+T,(r, 0),

uy(r,0) = a(r,0)+1i,(r,0),

ug(r, 0) = tiy(r, 0)+ itg(r, 0), 6)
Too(r, 7) = foolr, —6)+ Toelr, —9),

T, ¥) = 1(r, —8)+T,6(r, —9),

u/(r,y) = d,(r, —0)+u(r, —9),

ug(r,y) = dg(r, —8)+aig(r, —9).

In addition we shall require the components of the two stress fields ", T to satisfy the regu-
larity condition

)

Tprr TrerToe = Or %% asr — oo for every h > 0. @)

3. SOLUTION IN THE TRANSFORM DOMAIN

Next we apply the Mellin transform to the above field equations and bond conditions.}
Let the Mellin transform of a function f, defined and suitably regular on 0 < r < o0, be
denoted by

T(f1s) = f: St ar, ®)

+ The mathematical analysis is somewhat formal and abbreviated here since it is strictly analogous to that
used in [1, 3], where several references may also be found regarding the theory of the Mellin transform and its
use in the solution of elastostatic problems for wedges.
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where s is a complex parameter. Let (s, §), %, s, 0), (s, ) denote the Mellin transforms
with respect to r of @(r, 6), r’z,(r, 0), ru(r, 6). A formal application of the Mellin transform
to (3) yields an ordinary differential equation for ¢ the general solution of which is

@(s, 8) = a(s) sin(sh) + b(s) cos(sf) + c(s) sin(sO + 26)+ d(s) cos(sf + 26), 9)
in which the functions a(s), b(s), etc. (@', ¥', etc. for ¢’ and &, b, etc. for $) are to be determined

through the transforms of (4) and (5) from the transform of the bond conditions (6). After
use of (9) these transformed equations appear as

2
2,.(s,0) = (a%i—s) #(s,0),  toels, 0) = s(s+1)P(s, 6),

(10)
b5 6) = (5 1) 35606,),
0,(s,6) = 21—”[scf>(s, 0)+ mc(s) sin(s6 + 20) + md(s) cos(s6 + 20)],
(11)
flg(s, 0) = %[— (%(ﬁ( s, 8)+ mc(s) cos(s0 + 26) — md(s) sin(s@ + 20)] ,
250(5, 0) = Fgqls, 0)+2gs(s, 0),
(s, 0) = £,4(5,0)+2,4(5, 0),
(s, 0) = &i,(s,0)+1i,(s,0),
(s, 0) = tg(s, 0)+dig(s, 0), 12)

2oals, 7) = tagls, — )+ Taals, —9),

tr0(s, 7) = ols, —8)+1r(s, —9),

(s, y) = (s, —0)+(s, —9),

o(s,7) = fig(s, —8)+figls, — ).
The substitution of (9)(11) into (12) provides the following system of eight equations
for the eight unknowns a”(s), b"(s), c”(s), d"(s), a(s), b(s), &(s), d(s);
b+d—b"—d" = —Hys, 0)/s(s+ 1),
sA+(s+2)é—sa"—(s+2)c” = —*%,4s5,0)/s+1,
sb+(s+m')d—ksb” —k(s +m")d” = —2u'fi(s,0),
—sa—(s+2—m)é+ksa’+k(s+2—m")c” = —2u'fils,0), (13)
— sin(sé)a+ cos(sd)b — sin(sé + 26)¢ + cos(sd + 26)d — sin(sy)a”
—cos(sy)b” —sin(sy + 2y)c” — cos(sy +2y)d” = — toels, —8)/s(s+1),
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5 cos(s8)a+ s sin(s8)b + (s + 2) cos(sé + 26)¢ + (s + 2) sin(sé + 28)d — s cos(sy)a”

+ s sin(sy)b” — (s +2) cos(sy + 2y)c” +(s+ 2) sin(sy + 29)d" = —4,4(s, —O)/s+1, 13)
— ssin(s8)a+ s cos(s8)b — (s + m') sin(sd + 28)¢ + (s + m') cos(sd + 26) (cont.)
—k{s sin(sy)a” + s cos(sy)b” + (s +m") sin(sy + 2y)c” + (s + m".) cos(sy +2y)d"}
= =2u'fl (s, —9),
— 5 ¢cos(s8)a— s sin(s6)b — (s + 2 — m’) cos(sé + 28)c — (s + 2 — m') sin(sé + 25)d
—k{—scos(sy)a” + s sin(sy)b” — (s + 2 —m") cos(sy + 2y)c” + (s+ 2 —m") sin(sy + 2y)d"}
= —2p'fi(s, —9),
in which
k=ply (14)

The solution of (13) together with (9)«(11) determine {i(s, 9),fi(s,0)}, {¥'(s,0), (s, 6)}
for —8 < 0 < 0,0 < 8 < y respectively as meromorphic functions of the complex variable
s, which, in view of the regularity of #;; and the assumptions (7), can be shown to be analytic
in the open strip ~2 < Re(s) < —1 except for poles that may occur only at the zeros of
the determinent of the coeflicients in the system of equations (13).

The polar components of the desired solution {T,8} on D’ and {t",u"} on D” are then
obtained by use of the inversion theorem for the Mellin transform, which gives in the
present circumstances stress and displacement components of the form

¢ +ico
w0 =5 [ talsorrrds
[hnt 1+ 4] (15)

c+iw
w8 =5 " aGorias

where, because of (7), the choice of ¢ determining the path of integration in the complex
line integrals is taken to be

c=—1-¢ (0 < € < |Re(sy)|— 1), (16)

provided s, denotes the location of that pole (or conjugate pair of poles if s, is not real)
in the open strip —2 < Re(s) < —1 with the largest real part.

4. STRESS FIELD SINGULARITIES AT THE INTERFACE CORNER

The remainder of this investigation is concerned with determining the dependence
of the order of the singularity in the stress field as r — 0 on the angle 6 and the material
constants u”,v”, i, v'.

Using arguments analogous to those in Section 4 of [1,3] it can be shown that the
stress field has a singularity of order r~*1=2, log r, or 1 as r — 0 according as the deter-
minant of the coefficients in (13) has a zero s, in —2 < Re(s) < —1, has no zero in this
open strip but s = —2 is a zero of order two, has no zero in this open strip and s = —2
is only a simple zero. Therefore, attention is focused henceforth on the determinant of
the coefficients in (13) with a view toward locating its zeros in —2 < Re(s) < —1.
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In order to express the determinant relatively concisely we make use of the composite
parameters a, f introduced in [2] and used subsequently in [3-5]. Thus we recall the defi-
nitions of a, B from [3] as

_ ulmil — ullml #I(mll — 2) — ﬂll(ml —_ 2)

_Emoem - 17
#/mll+u”ml ﬂ ulmll+u”ml ( )

We also make a change of complex variables
p=—s—1=¢+in. (18)

In terms of these parameters and the angle 6, the determinant of the coefficients in (13)
{times the quantity sin’[p(n—y)] (x—p)*}, which we denote by 2(5,«, 8;p), can be
written as

D(5, 0, B;p) = [(2—B)*p* sin? 6—(1— B)* sin*(pd)][(1 + B)* sin’(py)
—(@— B)*p? sin® y]+(o* — 1) sin*[p(r —7)] {2(x — B)*p? sin’ y (19)
+2(1 — B sin(pd) sin(py) — (a — 1) sin?[p(n — )]}

The equation obtained by setting & equal to zero for a particular geometry, determined
by the angle 4, defines a one parameter family of curves in the a—f plane with p as the
parameter (or two intersecting families of curves with £,# as the parameters in the regions
of the «—f plane where the root p is complex). Since from (19)

20, B;p) = D(y, —a, —B;p) (20

we can confine our consideration of anglesdtoz < d < 2msothat x >y > 0.

From (18),(19) and the asymptotic analysis of the stress field mentioned previously
it follows that the order of the singularity in the stress field given in (15) and (16) as r — O is
O(r~1*P1)if p, is real,

O[r~**%1 cos(n, logr) or r~1*%tsin(n, log7)] on
Tr =9 ifp, = & +in, is complex,
O(log r) if no zero of 2 occurs in

O<Re(p)<lbutd?/dp=0atp=1

N

where p, is the zero of 2 in 0 < Re(p) < 1 that has the smallest real part. As will become
evident 2 may have several zeros in 0 < Re(p) < 1, but p, determines the order of the
singularity in (21) and is the only root of interest here.

5. THE ROOT p, OF 9(,a,B;p) =0

The zeros of & are best found by plotting the loci of chosen values of the root p in
the o—f plane. Thus it is desirable at this point to recall from [2, 3] some of the physical
properties of the composite parameters «, . Under the restrictions

0<v,v'<} O<p,p' <o, 22)
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all values of «, B determined by (1) and (17) are contained in the parallelograms in the a—p
plane shown in Fig. 2. The generalized plane stress parallelogram—dashed lines—is
completely contained in the one for plane strain. The four elastic constants y/', v, u”, v"
with (1) and (17) determine a unique point in the a—f plane, but one point in the «—f plane

B
_ ,mu_ IJ-""" ]
S amr 05 _- 0 ;;
8= E’(m"-Z)-E"(m'-Z) . /// Y :
pwmt s pm' . ,/’/ X “
]
v
I/Z '
H/K1*0
//// /,
% l,{// ,/
i, % s E —— Plane strgin - m =4(l-V)
“ 2 ooy, ——= Generalized plane stress - m=-2_
et _-— KIp =" T+V
0-*5 —1-05

FiG. 2. Parallelograms of physically relevant material combinations.

may correspond to an infinite number of material combinations. The ratio of the two
shear moduli restricts the possible values of a, § to a smaller polygon. Such a polygon is
shown in Fig. 2 for u'/u” = 4. This polygon is degenerate to a straight line for the ratios
W' -0 (@—> =1, g/u=1 (e=p and u'/u” - o (x—1). The point a = =0
represents identical materials. Poisson’s ratio v’ increases upwardly from 0 to 4 along the
left vertical line (¢ = — 1) of the appropriate parallelogram and v” increases downwardly
likewise along the right vertical (x = 1). A choice of v/, v’ determines a straight line across
the parallelogram along which u'/u” varies from 0 to oo and all such lines for which v' = v"
pass through the origin.

Zeros of D for certain particular composites or angles
From (19) one can verify that for u'/u” — 0, so that « - —1, 2 assumes the form

2(8, — 1, B; p) = [sin*(py)—p? sin? y] I:p2 sin? 6 — (% ’ sinz(pé)] , (23)

in which § assumes its limiting value (2—m')/m’ as obtained from (17) as u'/u” — 0. The
first factor in (23) determines the root p appropriate to the traction boundary value problem
for a single wedge of angle y. It represents for the limit u’/u” — 0 a “free-free” -wedge
(¢’ — 0) and coincides with equation (15) of [7]. The second factor in (23) determines
the roots p appropriate to the displacement boundary value problem for a single wedge
of angle & and Poisson’s ratio v'. It represents for the limit u'/u” — 0 a ““clamped-clamped”
wedge (u” — o0) and with the generalized plane stress interpretation of m’ can be brought
into agreement with equation (16) of [7]. Because of (20) the same conditions prevail for
the limit u4'/u” — oo, so that o — 1, but with the role of the two wedges reversed.
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Since the zero p, of 2 at o = +1 coincides with the root of the two factors in (23) with
the smallest real part it is useful to have the relevant root of each of these factors for the
full ranges of angles and Poisson’s ratio. Figure 3(a) shows the roots, which are always
real, as a function of wedge angle for the first factor in (23). The solid curve coincides with
curve 1 in Fig. 1 of [7] for a free-free wedge. Figure 3(b) shows the roots, which are also
always real, as a function of wedge angle and § for the second factor in (23). The solid
and dashed families of lines correspond to different sets of roots. Since the solid family
always corresponds to a smaller value of p it provides the relevant root. Curve 3 in Fig. 1
of [7] is supposed to give the minimum root for the second factor in (23) at v/ = 0-3, or

= —0-35; but the values on this curve appear to coincide with those of the dashed
family in Fig. 3(b) and therefore to be in error.

Since neither of the factors in (23) has a root in 0 < Re(p) < 1 for angles less than =,
and since, as remarked earlier, we need consider only é > = it follows that the root p,
of 2 at « = —1 is determined by Fig. 3(b) with angle & whereas the root p, of Z at « = 1
is determined by Fig. 3(a) with angle 8. Notice that the factors in (23) are of the same form
when f = 0 and that the information in Fig, 3(a) is also contained in Fig. 3(b) at § = 0.

Along the lines o = 8 (19) gives

20, 8,B;p) = —(1— %) sin*(pm), (24)

so that no root occurs in 0 < Re(p) < 1 but (d2/dp)i,-, vanishes. Hence by (21) the line
o = f(i.e. ' = u”) represents those composites for which the singularity in the stress field
is of order logr.

The particular values of p, at « = +1 and a = B just discussed can be observed in
all the cases chosen for numerical results (see Figs. 4-9).

For the particular angle y = 6 = = (19) gives

D(r,a, B;p) = —(1—B%)? sin*(pm), (25)

o
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F1G. 3. Root p for (a) tractions, or (b) displacements on a single wedge.
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FIG. 4. Roots p = p, of 2(3,«, f; p) = 0 for & = 185°.
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which is the same as the form for @ = # in (24) and no zero occurs in the strip 0 < Re(p) < 1

as is to be expected for bonded half-planes.
The limit § — 2z produces from (19)

2@n,a,B;p) = —(«*—1)* sin*(pn),

which does not vanish for 0 < Re(p) < 1 as long as a # +1. However, recall from (23)
and Figs. 3(a,b) that when a = +1 the root p = { is associated with § = 2x. It is not
difficult to understand the different physical interpretation that corresponds to the different
results obtained here as the limits 6 —» 2%, a*> — 1 are taken in different orders.

(26)

s P,=0.675

F1G. 5. Roots p = p, for 2(8,«, B;p) = 0 for 6 = 225°.
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Ti=0r'*?)

FiG. 6. Roots p = p, of (3, a, B; p) = 0 for 6 = 270°,

For angles 6 between m and 2n the zeros of 2 have to be found numericaily from (19).

For this purpose it is advantageous to divide both sides of (19) by (x— f)* and introduce
new parameters a, b through

1-a 1+a b—a b—a-2
a—m, b—{x—ﬁ, d—a+b, ﬁ—w (27)
Then (19) can be written in the form
gy = Kulo.bipk® + Kufo,bi plat Ko(3, i), 8)

S D|=O5I5

FiG. 7. Roots p = p, of 2(3,a, f;p) = 0 for & = 300°.
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p,=0.505

LA
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~_15%>0.99
720

RrEsin,

Fic. 8. Roots p = p, of 2(d,a, 8;p) = 0 for & = 315°

where
K (8,b; p) = p* sin? ysin*(pd)— [b sin®(pn)~ sin(py) sin(pd)]?,
K,(8,b; p) = 2(1 —b) sin(py) sin(pd)[b sin*(px) — sin(py) sin(pd)]
+2p? sin? y{sin*(pd) ~ b sin*(p(r — y)]},
K;3(8,b;p) = [p® sin? y— (1 —b)? sin*(py)](sin®(pd) - p” sin® y].

For chosen geometry § and real values of p it is an easy matter to solve the quadratic
equation for a obtained by setting 2 = 0 in (28) for given values of b. The corresponding

(29)

FiG. 9. Roots p = p; of 2(5,u, §; p) = 0 for & = 350°,
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values of o, 8 are then computed from (27). It usually happens that such real root loci
will not pass through certain regions of the o—f plane, which means that the p is complex
in those regions. When p = ¢ +in is complex we write

DO, o, B; E+in) = D0, 0, 5 &, ) +iDy(S, o, B; &, m), (30)

and 2 vanishes for p when @, 2, vanish simultaneously for £, #. In this manner we obtain
a net of intersecting curves with £, # as the parameters in the complex root region of the
o—pB plane.

6. NUMERICAL RESULTS AND DISCUSSION

A simple computer program was written to solve for the roots of the quadratic in (28)
(or the pair of quadratics when p is complex). Sufficient values of § were chosen to reveal
the dependence of p, on § for # < § < 27 and any desired composite determined by a
choice of a, . The results for § = 185°, 225°, 270°, 300°, 315° and 350° are exhibited in
Figs. 4-9. In each figure the root p at « = —1 coincides with the values obtained from
Fig. 3(b) with angle 4 and the single value of p, at « = 1 coincides with that obtained from
Fig. 3(a) with angle 6. The limit p, — 1 falls on the line & = B.

The smallest values of p, occur always at o« = +1 which means that in no instance
is the stress singularity more severe than that associated with the traction and displacement
problems for a single wedge of angle J.

The general root picture does not change much in character with angle é and it can
be discussed with the aid of Fig, 6 for the case § = 270°. The region a > § is divided into
a real and a complex root region. The transition line (57, = 0) from real to complex roots
is the envelope of the real root loci for which p, varies from p;, = 1 at « = fto p, = 0-545
at « = 1. The root p, is real in the entire & < f region. As in Fig. 3(b) there are two roots of
nearly the same value for each a, § in this region. In fact, p, corresponds to one family
over part of the region o < f and to the other family over the remainder of the region.
Along the heavy dashed line the root p, is a double root. The situation is very much the
same for § = 225° and & = 185° as shown in Figs. 5 and 4. The dashed double root line
moves closer to the line o = § as § » n. For § = 185° the smallest value of p, is 0.945
at o = 1, thus revealing the expected limit p; — 1 for all «, § as § — =.

When é > 270° as is the case in Figs. 7-9, the double root line in the & < f region does
not pass through « = f = 0, and a complex root region occurs on this side of the « = f
line also. We see that as 6 — 2 the dashed double root line approaches @ = —1 where
p; — 0-5. Notice that for § =~ 360°, most of the a—f parallelogram is covered with p, = 1
curves, but as a®> — 1 the value of p; — 0-5. The two different results for different orders
of limits & — 360°, «> — 1 discussed earlier is better understood in the light of these results.

The root p, at « = —1 belongs to the same family for all values of §, §. The intercepts
of this family at « = —1 correspond to the solid lines in Fig. 3(b). The dashed lines in this
figure represent the intercepts of the other family of roots.
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the National Science Foundation.
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AGcTpakT—PaccMaTpuBaeTca IUTOCKasA 3a4ava OAHOPOJHBIX, YNPYTHX KIMHOB, H3TOTOBJICHHBIX H3 IBYX
Pa3HOPOAHBIX, H3OTPOIHBIX MATEPHAJIOB. DTH KJIHHBI COeAMHEHHbIC ¢ cO60M BAOIH MX OOILMX CTOPOH Tak,
4YTO IMOMNEepEeYHOE CEYCHHE COCTABIIAET COCTABHYIO HOJHYIO IUIOCKOCTh C OJHHM YIJIOM MEXAY OBYMS IPOCT-
BIMH ITOBEPXHOCTH pa3pnena. Harpyska npuiaokKeHHas X peryJispHOMY INIOCKOMY NOJIO MAacCOBBIX CHII C
KOHCYHOH paBHOACHCTBYIOILICH CHIOH, MPHIOKEHHON K OrpaHAYEHHOMY NMOAPakoHy ofHo#t M3 obGmacreit
xiHHa. O6pamaercs BHUMaHHe HA ONpeacieHUH (aKkTa, Kak NOPANOK CHHTYNSPHOCTH IJIS TMOJISL HANPSUIK-
€HHH IPH BEPLIKHE 3aBUCHT OT IIOCTOAHHBIX MAaTEPHaJsia M yIiia BepIMHEL. [{al0TCA YHCIEHHbIE Pe3ynbTaThl
IS HEKOTOPHIX BHIGPaHHEBIX YIJIOB M BCeX QHM3M4ECKH 3aBHCHMBIX CI0EB MaTepnaia. B HHKaxoM npumepe
CHHI'YNISIPHOCTb HanpsikeRult Gonee cTpora, yeM Takas, 16O CBA3AHHAA C 3a1a4aMH CLCIUTCHHS ¥ epeMe-
IICHHS IUIA BXOAAUIOrO 3JIEMEHTA KJIMHA.



